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From McKean-Vlasov SDEs to nonlinear FP(K)Es and back

1. From McKean-Vlasov SDEs to nonlinear FP(K)Es and back

a) McKean-Vlasov SDEs −→ nonlinear FPEs

Let P(Rd) denote the set of all Borel probability measures on Rd and let

b = (b1, . . . , bd) : [0,∞)× Rd × P(Rd) −→ Rd ,

σ = (σij)1≤i,j≤d : [0,∞)× Rd × P(Rd) −→ L(Rd ,Rd)

be measurable. Consider the following McKean-Vlasov SDE

dX (t) = b
(
t,X (t),LX (t)

)
dt + σ

(
t,X (t),LX (t)

)
dW (t), (MVSDE)

where W (t), t ≥ 0, is an Rd -valued (Ft)-Brownian motion on a filtered probability space
(Ω,F , (Ft),P) and

LX (t) := P ◦ X (t)−1, t ≥ 0,

are the time marginal laws of X (t), t ≥ 0, under P.
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From McKean-Vlasov SDEs to nonlinear FP(K)Es and back

By Itô’s formula it is easy to find the nonlinear (!) Fokker–Planck equation (FPE for
short) for the time marginal laws LX(t) =: µt , t ≥ 0, of the solution X (t), t ≥ 0, to
(MVSDE). More precisely, for smooth ϕ : Rd → R with compact support we have for
t ≥ 0∫∫∫

Rd
ϕ(x)µt(dx) =

∫
Ω

ϕ(X (t)(ω))P(dω)

=

∫
Ω

ϕ(X (0)(ω))P(dω) +

∫
Ω

∫ t

0

LLX (s)
ϕ(X (s)(ω))ds P(dω)

=

∫∫∫
Rd
ϕ(x)µ0(dx) +

∫∫∫ t

0

∫∫∫
Rd

Lµsϕ(s, x)µs(dx)ds (NLFPE)

where for x ∈ Rd , t ≥ 0, and aij := (σσT )ij , 1 ≤ i , j ≤ d ,

Lµtϕ(t, x) =
1

2

d∑
i,j=1

aij(t, x , µt)
∂2

∂xi∂xj
ϕ(x) +

d∑
i=1

bi (t, x , µt)
∂

∂xi
ϕ(x).

References: Huge! E.g. Carmona/Delarue: Vol. I + II, Springer 2018
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From McKean-Vlasov SDEs to nonlinear FP(K)Es and back

We can rewrite (NLFPE) in the sense of Schwartz distributions as follows:

∂

∂t
µt =

1

2

d∑
i,j=1

∂2

∂xi∂xj

[
aij(t, x , µt)µt

]
−

d∑
i=1

∂

∂xi

[
bi (t, x , µt)µt

]
,

µ0 ∈ P(Rd) given,

or shortly

∂tµ =
1

2
∂i∂j(aij(µ)µ)− ∂i (bi (µ)µ), (“distributional solution”)

µ0 ∈ P(Rd) given.

We refer to Chap. 10 in: Bogachev/Krylov/R./Shaposhnikov: AMS Monograph 2015.
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From McKean-Vlasov SDEs to nonlinear FP(K)Es and back

b) Nonlinear FPEs −→ McKean-Vlasov SDEs

Now let us go backwards, i.e. first solve (NLFPE) and then construct a weak
solution to (MVSDE).

Let aij , bi , 1 ≤ i , j ≤ d , be as in the previous section.

Assumption: There exists a solution [0,∞) 3 t 7→ µt ∈ P(Rd) of (NLFPE) such that

(i) For all T > 0 and 1 ≤ i , j ≤ d

aij , bi ∈ L1([0,T ]× U,µtdt) for every ball U ⊂ Rd ,∫ T

0

∫
Rd

|aij (t, x ,µt)|+ |〈x , bi (t, x ,µt)〉|
1 + |x |2

µt(dx) dt <∞

(ii) [0,∞) 3 t 7→ µt is weakly continuous.
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From McKean-Vlasov SDEs to nonlinear FP(K)Es and back

Now fix this solution (µt)t≥0.

Theorem I ([Barbu/R.: SIAM Journal of Math. Analysis 2018 and Ann. Probab.
2020])

There exists a d-dimensional (Ft)-Brownian motion W (t), t ≥ 0, on a stochastic basis
(Ω,F , (Ft)t≥0,P) and a continuous (Ft)-progressively measurable map
X : [0,∞)× Ω→ Rd satisfying the following McKean-Vlasov SDE

dX (t) = b
(
t,X (t),µt

)
dt + σ

(
t,X (t),µt

)
dW (t),

where σ = ((aij)1≤i,j≤d)
1
2 , such that we have, for the marginals,

LX (t) = P ◦ X (t)−1 = µt , t ≥ 0. (“probabilistic representation”) (PR)

Remark

b, σ only measurable in measure variable !
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From McKean-Vlasov SDEs to nonlinear FP(K)Es and back

Proof. Let (µt)t≥0 be as in Assumption. Then by [Bogachev/R./Shaposhnikov: JDDE
2020], which is a recent regeneralization of a beautiful result in [Trevisan: EJP 2016],
there exists a probability measure P on C([0,T ];Rd) equipped with its Borel σ-algebra
and its natural filtration generated by the evaluation maps πt , t ∈ [0,T ], defined by

πt(w) := w(t), w ∈ C([0,T ],Rd),

solving the martingale problem for the linear Kolmogorov operator (with µ = (µt)t≥0 as
above fixed)

Lu := 1
2
aij(µ)∂i∂j + bi (µ)∂i

with marginals
P ◦ π−1

t = µt , t ≥ 0.

Then, the assertion follows by a standard result (see e.g. [Stroock: LMS Text 1987]).
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From McKean-Vlasov SDEs to nonlinear FP(K)Es and back

c) The Nemytskii – case

The dependence of aij and bi , 1 ≤ i , j ≤ d , on the measure µt(dx) can be arbitrary (as
long as it is measurable). In Section 2 we shall, however, consider examples of the
following type: we look for a solution (µt)t≥0 to (NLFPE), which is absolutely
continuous, i.e.

µt(dx) = u(t, x) dx , t ≥ 0,

(dx = Lebesgue measure on Rd) and aij , bi are of Nemytskii–type, i.e. for t ≥ 0, x ∈ Rd ,

aij(t, x , u(t, ·) dx) = aij(t, x , u(t, x)),

bi (t, x , u(t, ·) dx) = bi (t, x , u(t, x)),
”Nemytskii–type”

where

aij : [0,∞)× Rd × R→ R,

bi : [0,∞)× Rd × R→ R

are measurable functions.

Remark

No continuity in the measure variable !
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From McKean-Vlasov SDEs to nonlinear FP(K)Es and back

Then the NLFPE is

∂

∂t
u(t, x) =

1

2

d∑
i,j=1

∂2

∂xi∂xj

[
aij(t, x , u(t, x))u(t, x)

]
−

d∑
i=1

∂

∂xi

[
bi (t, x , u(t, x))u(t, x)

]
,

u(0, ·) a given probability density on Rd ,

and for σσT = (aij)1≤i,j≤d the corresponding McKean–Vlasov SDE is

dX (t) = b(t,X (t), u(t,X (t)))dt + σ(t,X (t), u(t,X (t)))dW (t),

LX (t)(dx) = u(t, x)dx , t ≥ 0.

Note: Theorem I above still applies, if Assumption holds. So, the task is to solve the
above NLFPE and check Assumption for its solution u(t, x)dx , t ∈ [0,T ]. Then vision
from [McKean: PNAS 1966] realized!
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Perturbed porous media equation and nonlinear distorted Brownian motion

2. Perturbed porous media equation and nonlinear distorted Brownian
motion

Ref.: [Barbu/R.: arXiv:1904.08291v7, IUMJ 2021+]
In this section we look at the following special Nemytskii–type NLFPKE

ut − 1
2
∆β(u) + div(Db(u)u) = 0 in (0,∞)× Rd ,

u(0, x) = u0(x), x ∈ Rd ,
(pPME)

where d ∈ N and β : R→ R, D : Rd → Rd and b : R→ R, such that

(i) β ∈ C 1(R), β(0) = 0, γ ≤ β′(r) ≤ γ1, ∀r ∈ R, for 0 < γ < γ1 <∞.
(ii) b ∈ Cb(R) ∩ C 1(R).

(iii) D ∈ L∞(Rd ;Rd)∩W 1,1
loc (Rd ;Rd), div D ∈ (L∞(Rd) + L1(Rd))∩ (L∞(Rd) + L2(Rd)).

(iv) D = −∇Φ, where Φ ∈W 2,1
loc (Rd), Φ ≥ 1, lim

|x|d→∞
Φ(x) = +∞ and there exists

m ∈ (0,∞) such that Φ−m ∈ L1(Rd)

(hence aij(t, x , r) := β(r)
r
δij , bi (t, x , r) := b(r)D(x), r ∈ R).
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Perturbed porous media equation and nonlinear distorted Brownian motion

Its corresponding Kolmogorov operator is

Lu(t,x) = 1
2
β(u(t,x))
u(t,x)

∆− b(u(t, x))〈∇Φ,∇·〉


Generator of distorted

Brownian motion

if β = id and b = const. !

and the corresponding DD (= McKean–Vlasov) SDE

dX (t) = −b(LX (t)(X (t)))∇Φ(X (t))dt +

√
β(LX (t)(X (t)))

LX (t)(X (t))
dW (t),

LX (t)(x) : =
dLX (t)

dx
(x) = u(t, x), t ≥ 0, (NLDBM)

“nonlinear
distorted
Brownian
motion”

LX (t)(dx) = P ◦ X (t)−1(dx), t ≥ 0.

Remark

We shall see that by Theorem I above and Theorem II below, the above DDSDE has a
weak solution, so “nonlinear distorted Brownian motion” exists.
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Perturbed porous media equation and nonlinear distorted Brownian motion

Remark

A typical example for Φ as in (iv) above is

Φ(x) = C(1 + |x |2)α, x ∈ Rd ,

with α ∈
(
0, 1

2

]
.

Now let us solve (pPME).
Consider the operator A : D(A) ⊂ L1 → L1, defined by

Au := − 1
2
∆β(u) + div(Db(u)u), ∀u ∈ D(A),

D(A) := {u ∈ L1; −∆β(u) + div(Db(u)u) ∈ L1},

in L1 := L1(Rd). Here, the differential operators ∆ and div are taken in the sense of
Schwartz distributions, i.e., in D′(Rd). Obviously, the operator (A,D(A)) is closed on L1.
Denote by D(A) the closure of D(A) in L1.
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Perturbed porous media equation and nonlinear distorted Brownian motion

Proposition I

Assume that Hypotheses (i)–(iv) hold. Then, the operator A is m-accretive, that is,

R(I + λA) = L1, ∀λ > 0,

|(I + λA)−1u − (I + λA)−1v |1 ≤ |u − v |1, ∀λ > 0, u, v ∈ L1.

Furthermore,

D(A) = L1,

where “ ” denotes the closure in L1. Moreover, there exists λ0 > 0 such that, for all
λ ∈ (0, λ0),∫

Rd

(I + λA)−1u0dx =

∫
Rd

u0(x)dx , ∀u0 ∈ L1,

(I + λA)−1u0 ≥ 0, a.e. in Rd if u0 ≥ 0, a.e. in Rd .
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Perturbed porous media equation and nonlinear distorted Brownian motion

Now we can rewrite (pPME) as the Cauchy problem associated with A, that is,

du

dt
+ Au = 0, t ≥ 0,

u(0) = u0.

(CP)

Since A is m-accretive, we have by the Crandall & Liggett theorem the following
existence result for (CP).
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Perturbed porous media equation and nonlinear distorted Brownian motion

Theorem II ([Barbu/R.: arXiv:1904.08291v7, IUMJ 2021+])

Under Hypotheses (i)–(iv), for every u0 ∈ L1, and t ≥ 0, the following limit exists

u(t) = lim
n→∞

(
I +

t

n
A
)−n

u0 =: S(t)u0 (= ”e−tA”u0),

uniformly on bounded intervals of [0,∞) in L1 and is called mild solution to (CP).
Furthermore, ∫

Rd

u(t, x)dx =

∫
Rd

u0(x)dx , ∀t ≥ 0,

u(t, x) ≥ 0, a.e. on (0,∞)× Rd if u0 ≥ 0, a.e. in Rd .

In particular, for each t ≥ 0, u(t, ·) is a probability density if so is u0.
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Perturbed porous media equation and nonlinear distorted Brownian motion

Theorem II (continued)

Furthermore, the map t → S(t)u0 is a continuous semigroup of (nonlinear) contractions
on L1, that is,

S(t + s)u0 = S(t)S(s)u0, ∀t, s ≥ 0, u0 ∈ L1,

lim
t→0

S(t)u0 = u0 in L1,

|S(t)u0 − S(t)ū0|1 ≤ |u0 − ū0|1, ∀t ≥ 0, u0, ū0 ∈ L1.

In particular, u(t, ·) = S(t)u0, t ≥ 0, is a distributional solution to (pPME) and, if
u0 ∈ L1 ∩ L∞, it is the unique solution in L1([0,T ]× Rd) ∩ L∞([0,T ]× Rd).

Theorem I + II =⇒

Theorem III

There exists a probabilistically weak solution to (NLDBM).
Furthermore, by [Barbu/R.: arXiv: 1909.04464v2, SPDE 2021+] for u0 ∈ L1 ∩ L∞ it is
unique, among all with time marginals in L∞([0,T ]× Rd)
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Asymptotic behaviour and unique stationary solution: The H–Theorem

3. Asymptotic behaviour and unique stationary solution: The H–Theorem

Additionally to (i)-(iv), assume

(v) b(r) ≥ b0 ∈ (0,∞) ∀r ≥ 0.

(vi) γ1∆Φ− b0|∇Φ|2 ≤ 0 (”balance condition”)

Consider the following subspace of L1

M =

{
u ∈ L1;

∫
Rd

Φ(x)|u(x)|dx <∞
}

with norm ‖u‖ :=

∫
Rd

Φ(x)|u(x)|dx .

Proposition II (one key point)

‖S(t)u0‖ ≤ ‖u0‖ ∀u0 ∈M+.
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Asymptotic behaviour and unique stationary solution: The H–Theorem

Define η ∈ C([0,∞)) ∩ C 2((0,∞)) by

η(r) :=

∫ r

0

dτ

∫ τ

1

β′(s)

sb(s)
ds, r ∈ (0,∞),

Note that η(r) = r(log r − 1), if β(s) = s, b(s) = 1 ∀ s ∈ R.

Define

V : D(V ) = {u ∈M; u ≥ 0, u log u ∈ L1} → R

by

V (u) :=

∫
Rd

η(u(x))dx︸ ︷︷ ︸
= −Entropy

+

∫
Rd

Φ(x)u(x)dx︸ ︷︷ ︸
= Energy

= −S [u] + E [u], u ∈ M, u ≥ 0.

Define for u0 ∈ D(V )

ω(u0) := {L1 − lim
tn→∞

S(tn)u0 : {tn} → ∞} (”ω − limit set of u0.”)
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Asymptotic behaviour and unique stationary solution: The H–Theorem

Theorem IV (“H-Theorem”, [Barbu/R.: arXiv:1904.08291v7, IUMJ 2021+])

Assume that Hypotheses (i)–(vi) above hold. Then the function V is a Lyapunov
function for S(t), t ≥ 0, that is, ∀u0 ∈ D(V )(:=M+ ∩ L log L) and 0 ≤ s ≤ t <∞

S(t)u0 ∈ D(V ) and V (S(t)u0) ≤ V (S(s)u0).

Moreover, for all u0 ∈ D(V )\{0} there exists u∞ ∈ D(V ) ∩ L∞ such that

ω(u0) = {u∞},
u∞ > 0 a.e., |u∞|1 = |u0|1, and it is given by

u∞ = g−1(−Φ + µ) with g(r) :=

∫ r

1

β′(s)

sb(s)
ds, r ∈ (0,∞),

where µ is the unique number in R such that∫
Rd

g−1(−Φ(x) + µ)dx =

∫
Rd

u0dx .
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Asymptotic behaviour and unique stationary solution: The H–Theorem

Theorem IV (“H-Theorem” continued)

In particular, for all u0 ∈ D(V ) the (one point) set ω(u0) = {u∞} only depends on |u0|1
Furthermore, u∞ is the unique element in D(V ) with given L1-norm such that
S(t)u∞ = u∞ for all t ≥ 0 and u∞dx is the unique stationary probability (distributional)
solution with density in L∞ of equation (pPME). Consequently, u∞dx is the unique
invariant measure with density in L∞ for the “nonlinear distorted Brownian motion”.

Proof. Important ingredient: modification of a general technique in [Pazy: J. d’Analyse
Math. 1981].
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Asymptotic behaviour and unique stationary solution: The H–Theorem

Remark u∞ is stationary solution of (pPME), according to Theorem IV.

Heuristical proof.

Set u := u∞.

div(−∇β(u)−∇Φb(u)u) = −∆β(u)− div(∇Φb(u)u) = 0

⇐=
β′(u)

ub(u)
∇u︸ ︷︷ ︸ = −∇Φ

= ∇(
∫ u

1
β′(s)
sb(s)

ds) = ∇g(u)

⇐⇒ g(u) = −Φ + µ for some µ in R

⇐⇒ u = g−1(−Φ + µ).
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Degenerate nonlinear distorted Brownian motion

4. Degenerate nonlinear distorted Brownian motion

As before we look at the following special Nemytskii–type NLFPKE

ut − 1
2
∆β(u) + div(Db(u)u) = 0 in (0,∞)× Rd ,

u(0, x) = u0(x), x ∈ Rd ,
(pPME)

where d ∈ N and β : R→ R, D : Rd → Rd and b : R→ R, Except for (i) our Hypotheses
are as before:

(i)’ β ∈ C 1(R), β′(r) > 0, ∀ r ∈ R \ {0}, β(0) = 0, and
µ1 min{|r |ν , |r |} ≤ |β(r)| ≤ µ2|r | ∀ r ∈ R,
for µ1, µ2 > 0 and ν > d−1

d
, d ≥ 3.

(ii) b ∈ Cb(R) ∩ C 1(R).

(iii) D ∈ L∞(Rd ;Rd)∩W 1,1
loc (Rd ;Rd), div D ∈ (L∞(Rd) + L1(Rd))∩ (L∞(Rd) + L2(Rd)).

(iv) D = −∇Φ, where Φ ∈W 2,1
loc (Rd), Φ ≥ 1, lim

|x|d→∞
Φ(x) = +∞ and there exists

m ∈ (0,∞) such that Φ−m ∈ L1(Rd)

(v) b(v) ≥ b0 ∈ (0,∞)

(vi) (”balance condition”) µ2∆Φ− b0|OΦ|2 ≤ 0 a.e. on Rd

M. Röckner (Bielefeld) Equlibria of nonlinear distorted Brownian motions 24 / 27



Degenerate nonlinear distorted Brownian motion

Then the existence (not yet uniqueness) result from Theorems II and III above still hold.
What about the (H-) Theorem IV?

Lyapunov function is still the same, namely:

V (u) :=

∫
Rd

η(u(x))dx︸ ︷︷ ︸
= −Entropy

+

∫
Rd

Φ(x)u(x)dx︸ ︷︷ ︸
= Energy

, u ∈M+ ∩ L log L,

where as before

η(r) :=

∫ r

0

dτ

∫∫∫ τ

1

β′(s)

sb(s)
ds︸ ︷︷ ︸

=: g(τ)

, r ∈ (0,∞),
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Degenerate nonlinear distorted Brownian motion

For R ∈ (0,∞) let
MR := {u ∈M|‖u‖ ≤ R}

and let
P:={u ∈ L1|u ≥ 0,

∫
Rd u dx = 1}.

Theorem V (”Existence of a stationary solution / invariant measure”)

[Barbu/R.: arXiv:2105.02328]
Suppose Hypotheses (i)’, (ii)-(vi) hold and that, additionally,

lim
r→∞

g(r) =∞, if ν ∈ ( d−1
d
, 1]

and lim
r→0

g(r) = −∞, if ν ∈ (1,∞).

Then ∃u∞ ∈M∩P ∩ D(A) ∩ L∞ such that
S(t)u∞ = u∞ ∀t ≥ 0.
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Degenerate nonlinear distorted Brownian motion

4. Degenerate nonlinear distorted Brownian motion

Theorem VI ([Barbu/R.: arXiv:2105.02328] )

Suppose Hypotheses (i)’, (ii)-(vi) hold. Let R ∈ (0,∞) and let u0 ∈MR ∩ P ∩ D(A)
L1

.

Then ω(u0) ⊂MR ∩ P ∩ D(A)
L1

is nonempty and for all t ≥ 0, ω(u0) is compact in L1,

ω(u0) = {S(t)u0 | t ≥ 0}
L1

, and invariant under S(t). Moreover, S(t) is, for every t ≥ 0,
an isometry on ω(u0) and it is a homeomorphism from ω(u0) onto itself for each t ≥ 0.

If a ∈MR ∩ P ∩ D(A)
L1

is such that

S(t)a = a, ∀ t ≥ 0, (4.1)

then ω(u0) ⊂ {y ∈MR ∩ P ∩ D(A)
L1

; |y − a|1 = r}, for some 0 ≤ r ≤ |u0 − a|1.

Proof. Important ingredient: a modification of a general result in [Dafermos/Slemrod:
JFA 1973]. Hard part: check the assumption, that ω(u0) is compact in L1.
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